
MÖSSBAUER SPECTROSCOPIC CHARACTERIZATION OF FE-LEONARDITE COMPLEXES

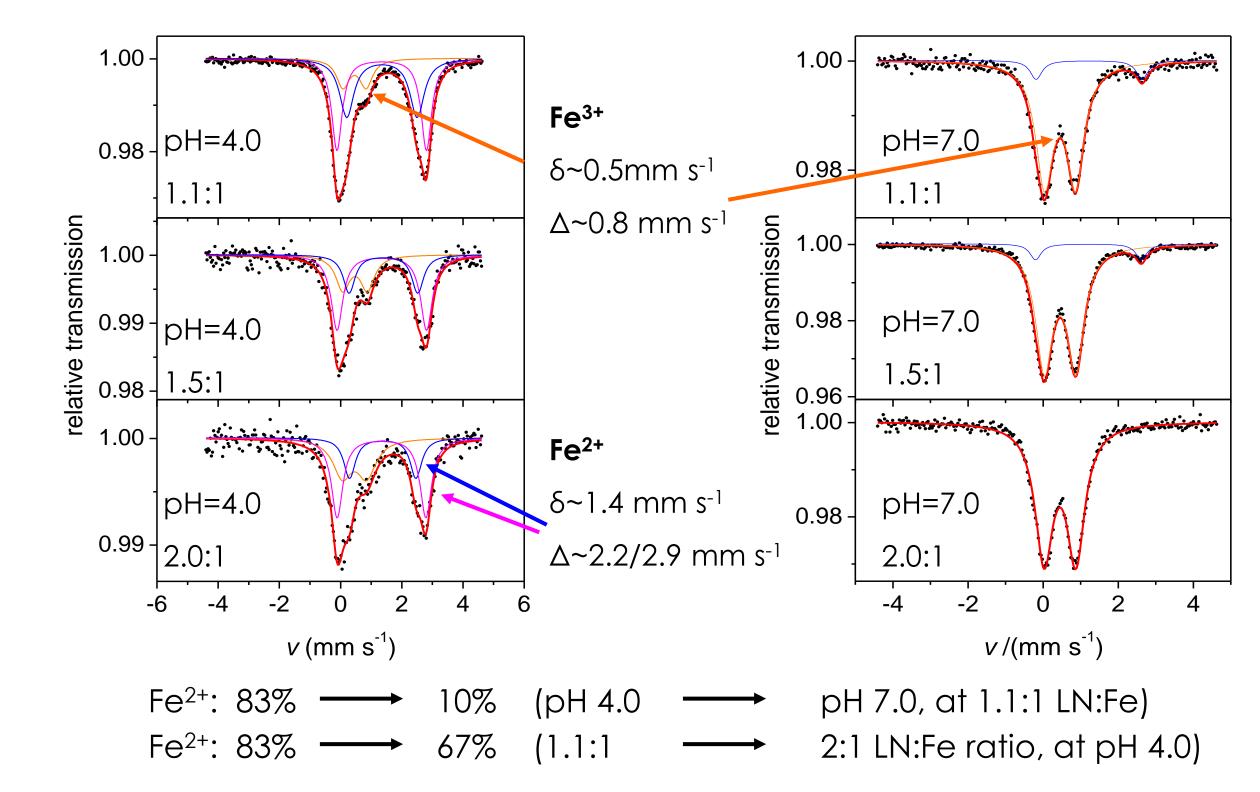
<u>K.Kovács¹</u>, F.Fodor², V.Czech², Ádám Solti², S.Santos-Rosell³, J.J.Lucena³, L.Hernández-Apaolaza³

¹Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Hungary ²Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Hungary ³Agricultural Chemistry Department, Universidad Autonóma de Madrid, Spain

INTRODUCTION

Leonardite (LN): water-soluble humic substances extracted from coal leonardite. These HSs are similar to the soil HSs, since leonardite comes from carboniferous plant species. They can be described as supramolecular associations stabilized mainly by weak forces such as dispersive hydrophobic interactions and hydrogen bonds.

Chemical characterization of LN:


- highly oxidized state oxygene containing functional groups, carboylic acids (FTIR, ¹³C-NMR)

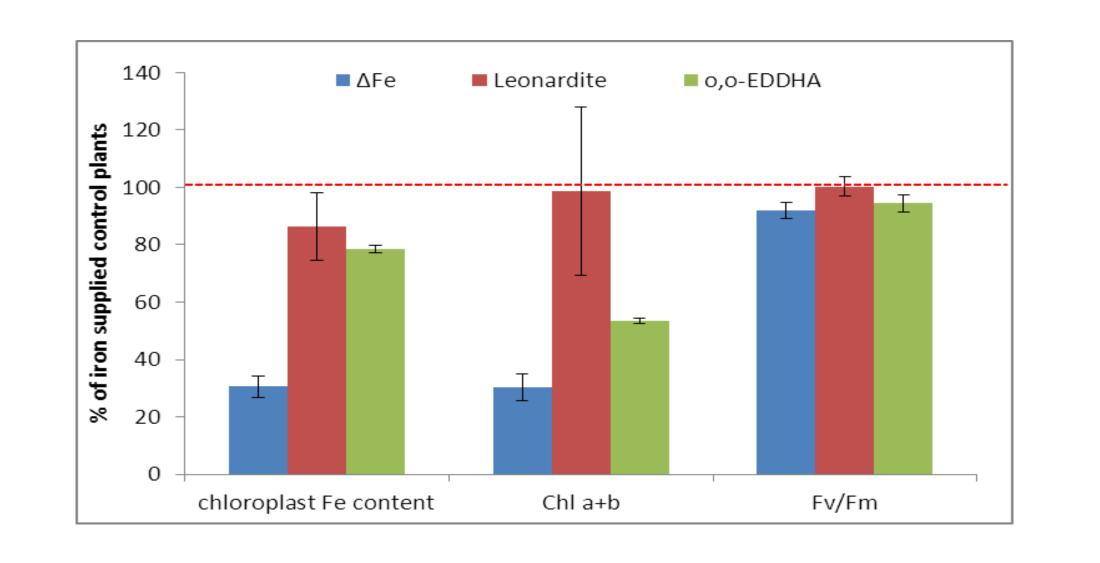
- stable in wide pH range
- not degradable
- expensive
- E.g. EDTA, EDDHA, ...

hydroponics:

RESULTS AND DISCUSSION

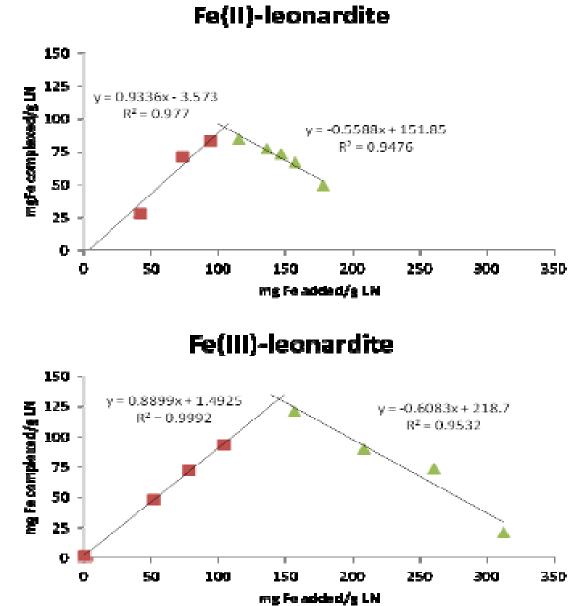
Fe-species formed in Fe²⁺-LS and Fe³⁺-LS complexes:

- biological applications
 - Fe^{2+}_{v} -(H₂O)_x-LN complex [1]
 - $Fe^{2+}(H_2O)_6$ complex
- $Fe^{3+}_{x}(OH)_{v}(LN)_{z}$ complex
- $Fe^{3+}_{x}(OH)_{v}(H_{2}O)_{7}$ compounds


of fertilizers

•Fe²⁺ adducts/complex form with LN. suggested to weak The resulting complex is sensitive to oxidation probably due to the oxygen content of air. The formation of amorphous ferrihydrite can be also suggested. In similar compounds, the formation of finely dispersed γ -FeOOH and/or γ -Fe₂O₃ was also found [2] while no crystalline, magnetically ordered Fe_2O_3 could be found.

• The complex formation between Fe³⁺ and LN is more favored compared to the divalent iron but only at neutral or probably at slightly alkaline pH. No reducing effect of LN was found.


• The redox properties and the Fe-species found in the case of Fe-LN systems are very similar to those observed in the case of other natural Fe-complexes, as Fe-lignosulfonates[3] and gluconates. LN cannot prevent the oxidation of Fe²⁺ but can prevent further crystallization of Fe³⁺ oxides/hydroxides, thus, it can help to keep Fe available for plants.

Maximum complexing capacity of LN:

Recovery of iron deficient cucumber upon Fe³⁺-LN treatment in

Fe³⁺-LN increased chloroplast iron content, total Chl content and the maximal quantum efficiency of photosystem II reaction centers (Fv/Fm, which is the main indicator of the function of the photosynthetic apparatus).

• MCC with Fe³⁺: 131±12 mg Fe/g product

- MCC with Fe²⁺: 94 ±12 mg Fe/g product
- Fe³⁺-LN is suggested to have higher stability at alkaline pH compared to Fe²⁺-LN.
- The oxidation of Fe²⁺ could lead to formation of Feoxides/hydroxides that results in the decrease of the soluble amount of the metal.

SUMMARY AND CONCLUSION

• Since most efficient Fe-fertilizers in hydroponics are those of low stability [2, 3], as long as they are stable enough in solution, Fe²⁺/Fe³⁺-LN complexes are suggested to be used in hydroponics. Strong Fe^{3+} -complexes could also be used effectively in foliar treatments.

- The oxidation of Fe²⁺-LN complexes on air has to be taken into account when applied as iron fertilizer since it may strongla influence the availability of iron in plants.
- Since no complex formation occurred between Fe³⁺ and LN at acidic pH, these compounds are suggested to be prepared and used only at neutral or at slightly alkaline pH.
- LN can prevent crystallization of Fe³⁺-oxides or hydroxides in slightly acidic or neutral medium.
- Fe-leonardite proved to be effective in restore of chloroplast iron content and the photosynthetic apparatus. In one day of recovery treatment, both total Chl content and F_{v}/F_{m} restored completely (there was no difference between Fe supplied and Fe-leonardite treated plants), whereas o,o-EDDHA was less effective agent to improve these physiological parameters.

REFERENCES

[1] Vinckler, P.; Lakatos, B.; Meisel, J., Geoderma 1976, 15, 231-242.

[2] Sorkina, T. A.; Polyakov, A. Y.; Kulikova, N. A.; Goldt, A. E.; Philippova, O. I.; Aseeva, A. A.; Velighzanin, A. A.; Zubavichus, Y. V.; Pankratov, D. A.; Goodilin, E. A.; Perminova, I. V., J. Soils Sediments **2013**, DOI 10.1007/s11368-013-0688-0

[3] Carrasco, J.; Kovács, K.; Czech, V.; Fodor, F.; Lucena, J. J.; Vértes, A.; Hernández-Apaolaza, L., J. of Agric. Food Chem. 2012, 60, 3331-3340

Acknowledgements: This study was carried out with the financial support of ERA Chemistry project (MCI-EUI 2009-04156; OTKA NN-84307).